GPTKB
Browse
Query
Compare
Download
Publications
Contributors
Search
multivariate normal distribution
URI:
https://gptkb.org/entity/multivariate_normal_distribution
GPTKB entity
Statements (43)
Predicate
Object
gptkbp:instanceOf
gptkb:organization
gptkbp:alsoKnownAs
gptkb:multivariate_Gaussian_distribution
gptkbp:characteristic
exp(i t^T μ - 1/2 t^T Σ t)
gptkbp:citation
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
gptkbp:conditionalDistribution
gptkb:normal_distribution
gptkbp:covariance
Σ (covariance matrix)
gptkbp:definedIn
n-dimensional real vector space
gptkbp:entropy
(1/2) ln((2πe)^k |Σ|)
gptkbp:firstDescribed
19th century
gptkbp:generalizes
gptkb:univariate_normal_distribution
gptkbp:hasInvariant
affine transformations
gptkbp:hasSpecialCase
gptkb:elliptical_distribution
https://www.w3.org/2000/01/rdf-schema#label
multivariate normal distribution
gptkbp:ifCovarianceDiagonal
components are independent
gptkbp:ifCovarianceSingular
distribution is degenerate
gptkbp:kurtosis
3
gptkbp:marginalDistribution
gptkb:normal_distribution
gptkbp:maximumLikelihoodEstimator
sample mean and sample covariance
gptkbp:meaning
μ (mean vector)
gptkbp:moments
all moments exist
gptkbp:namedAfter
gptkb:Carl_Friedrich_Gauss
gptkbp:parameter
covariance matrix
mean vector
gptkbp:probabilityDensityFunction
f(x) = (1/((2π)^{k/2} |Σ|^{1/2})) exp(-1/2 (x-μ)^T Σ^{-1} (x-μ))
gptkbp:relatedTo
gptkb:Hotelling's_T-squared_distribution
gptkb:Mahalanobis_distance
gptkb:principal_component_analysis
gptkb:Wishart_distribution
gptkb:multivariate_t-distribution
gptkb:Gaussian_process
Bayesian statistics
linear discriminant analysis
gptkbp:skewness
0
gptkbp:supports
x ∈ ℝ^k
gptkbp:usedIn
gptkb:machine_learning
gptkb:signal_processing
engineering
finance
physics
statistics
pattern recognition
gptkbp:bfsParent
gptkb:Gaussian_distribution
gptkbp:bfsLayer
5