multivariate normal distribution

GPTKB entity

Statements (43)
Predicate Object
gptkbp:instanceOf gptkb:organization
gptkbp:alsoKnownAs gptkb:multivariate_Gaussian_distribution
gptkbp:characteristic exp(i t^T μ - 1/2 t^T Σ t)
gptkbp:citation https://en.wikipedia.org/wiki/Multivariate_normal_distribution
gptkbp:conditionalDistribution gptkb:normal_distribution
gptkbp:covariance Σ (covariance matrix)
gptkbp:definedIn n-dimensional real vector space
gptkbp:entropy (1/2) ln((2πe)^k |Σ|)
gptkbp:firstDescribed 19th century
gptkbp:generalizes gptkb:univariate_normal_distribution
gptkbp:hasInvariant affine transformations
gptkbp:hasSpecialCase gptkb:elliptical_distribution
https://www.w3.org/2000/01/rdf-schema#label multivariate normal distribution
gptkbp:ifCovarianceDiagonal components are independent
gptkbp:ifCovarianceSingular distribution is degenerate
gptkbp:kurtosis 3
gptkbp:marginalDistribution gptkb:normal_distribution
gptkbp:maximumLikelihoodEstimator sample mean and sample covariance
gptkbp:meaning μ (mean vector)
gptkbp:moments all moments exist
gptkbp:namedAfter gptkb:Carl_Friedrich_Gauss
gptkbp:parameter covariance matrix
mean vector
gptkbp:probabilityDensityFunction f(x) = (1/((2π)^{k/2} |Σ|^{1/2})) exp(-1/2 (x-μ)^T Σ^{-1} (x-μ))
gptkbp:relatedTo gptkb:Hotelling's_T-squared_distribution
gptkb:Mahalanobis_distance
gptkb:principal_component_analysis
gptkb:Wishart_distribution
gptkb:multivariate_t-distribution
gptkb:Gaussian_process
Bayesian statistics
linear discriminant analysis
gptkbp:skewness 0
gptkbp:supports x ∈ ℝ^k
gptkbp:usedIn gptkb:machine_learning
gptkb:signal_processing
engineering
finance
physics
statistics
pattern recognition
gptkbp:bfsParent gptkb:Gaussian_distribution
gptkbp:bfsLayer 5