cumulativeDistributionFunction

87 triples
GPTKB property

Alternative names (3)
CDF cdf cumulative distribution function

Random triples
Subject Object
gptkb:von_Mises_distribution no closed form
gptkb:bernoulli_distribution 0 for x<0, 1-p for 0≤x<1, 1 for x≥1
gptkb:exponential_distribution_(when_k=1) F(x;λ) = 1 - e^{-λx} for x ≥ 0
gptkb:Pareto_distribution F(x; xm, α) = 1 - (xm/x)^α
gptkb:Arcsine_distribution_(when_alpha=beta=0.5) F(x) = (2/π) arcsin(√x) for 0 ≤ x ≤ 1
gptkb:generalized_extreme_value_distribution F(x) = exp(-[1 + ξ((x-μ)/σ)]^{-1/ξ})
gptkb:Inverse_chi-squared_distribution F(x; ν) = Γ(ν/2, 1/(2x))/Γ(ν/2)
gptkb:normal_distribution (1/2)[1 + erf((x-μ)/(σ√2))]
gptkb:univariate_normal_distribution Φ((x-μ)/σ)
gptkb:beta_distribution regularized incomplete beta function
gptkb:Log-gamma_distribution F(x; μ, θ, k) = γ(k, exp((x-μ)/θ))/Γ(k)
gptkb:chi_distribution P(x;k) = gamma(k/2, x^2/2) / Gamma(k/2)
gptkb:Gaussian_Distribution Φ((x-μ)/σ)
gptkb:Normal_distribution_(standard_parameterization) Φ((x-μ)/σ)
gptkb:Laplace_distribution 0.5 * exp((x-μ)/b) for x<μ, 1-0.5*exp(-(x-μ)/b) for x≥μ
gptkb:Binomial_distribution Sum_{i=0}^k C(n, i) p^i (1-p)^{n-i}
gptkb:generalized_Pareto_distribution F(x) = 1 - (1 + b(x-bc)/c)^{-1/b} for b
gptkb:Gamma_distribution F(x;k,θ) = γ(k, x/θ) / Γ(k)
gptkb:double_exponential_distribution F(x|μ,b) = 1 - 0.5 * exp(-(x-μ)/b) for x ≥ μ
gptkb:Lorentz_distribution F(x; x0, γ) = (1/π) arctan((x - x0)/γ) + 1/2

Please wait…