Statements (51)
Predicate | Object |
---|---|
gptkbp:instanceOf |
benchmark
|
gptkbp:aimsTo |
generalization ability
|
gptkbp:composedOf |
nine tasks
|
gptkbp:designedFor |
natural language understanding
|
gptkbp:hasImpactOn |
NLP_research
|
https://www.w3.org/2000/01/rdf-schema#label |
GLUE benchmark
|
gptkbp:includes |
gptkb:SST-2
CoLA MNLI QNLI WNLI RTE QQP STS-B |
gptkbp:introduced |
2018
|
gptkbp:isAvailableIn |
gluebenchmark.com
|
gptkbp:isChallengedBy |
gptkb:DistilBERT
gptkb:ERNIE gptkb:T5 GPT-2 BERT ALBERT transformer models SuperGLUE RoBERTa XLNet DeBERTa ELECTRA |
gptkbp:isCitedIn |
numerous research papers
|
gptkbp:isEvaluatedBy |
gptkb:Spearman's_rank_correlation
F1 score accuracy Matthew's_correlation_coefficient |
gptkbp:isPartOf |
NLP_evaluation_frameworks
|
gptkbp:isPopularIn |
machine learning community
|
gptkbp:isRelatedTo |
pre-trained models
transfer learning fine-tuning language models evaluation benchmarks |
gptkbp:isSupportedBy |
gptkb:PyTorch
gptkb:Keras TensorFlow Hugging Face Transformers |
gptkbp:isUsedFor |
hyperparameter tuning
model selection performance comparison |
gptkbp:provides |
evaluation metrics
|
gptkbp:relatedModel |
various_NLP_tasks
|
gptkbp:releasedIn |
AI2
|
gptkbp:usedBy |
researchers
|