Switch Transformer

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:based_on gptkb:Transformers_character
gptkbp:developed_by gptkb:Google_Research
gptkbp:enables faster training times
gptkbp:exhibited_at high throughput
gptkbp:has multiple experts per layer
gptkbp:has_achievements state-of-the-art performance
better accuracy with fewer parameters
https://www.w3.org/2000/01/rdf-schema#label Switch Transformer
gptkbp:improves model efficiency
gptkbp:introduced gptkb:2020
gptkbp:is_adopted_by various tech companies
gptkbp:is_analyzed_in machine learning studies
gptkbp:is_compared_to dense models
gptkbp:is_considered a significant advancement in deep learning.
gptkbp:is_considered_as a breakthrough in AI
gptkbp:is_designed_for natural language processing
gptkbp:is_discussed_in AI conferences
gptkbp:is_documented_in research articles
gptkbp:is_evaluated_by language modeling tasks
perplexity metrics
traditional transformers
gptkbp:is_explored_in academic papers
future AI developments
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by dynamic routing
sparse attention mechanisms
gptkbp:is_known_for high scalability
flexible architecture
gptkbp:is_optimized_for large-scale datasets
gptkbp:is_part_of AI research advancements
Google's AI strategy
Google's research portfolio
gptkbp:is_promoted_by AI researchers
gptkbp:is_related_to gptkb:GPT-3
gptkb:BERT
gptkbp:is_supported_by research funding
gptkbp:is_tested_for gptkb:GLUE_benchmark
gptkb:Super_GLUE_benchmark
gptkbp:is_used_in machine translation
question answering
text generation
gptkbp:is_utilized_in real-world applications
gptkbp:requires specialized hardware
gptkbp:scales trillions of parameters
gptkbp:training distributed training techniques
gptkbp:uses mixture of experts
gptkbp:utilizes sparsity in neural networks
gptkbp:bfsParent gptkb:GLUE_benchmark
gptkb:Super_GLUE_benchmark
gptkbp:bfsLayer 4