Ensemble Methods in Machine Learning

GPTKB entity

Statements (33)
Predicate Object
gptkbp:instanceOf Machine Learning Technique
gptkbp:appliesTo Regression
Classification
gptkbp:canBe gptkb:Neural_Networks
gptkb:Support_Vector_Machines
Heterogeneous
Homogeneous
Decision Trees
gptkbp:combines Multiple models
gptkbp:example gptkb:CatBoost
gptkb:LightGBM
gptkb:XGBoost
gptkb:Gradient_Boosting
gptkb:AdaBoost
https://www.w3.org/2000/01/rdf-schema#label Ensemble Methods in Machine Learning
gptkbp:improves Generalization
Computational cost
Model robustness
gptkbp:includes gptkb:Bagging
gptkb:Random_Forest
gptkb:Voting
Stacking
Boosting
gptkbp:introducedIn 1990s
gptkbp:popularizedBy gptkb:Leo_Breiman
gptkbp:reduces Variance
Overfitting
Bias
gptkbp:relatedTo Bias-variance tradeoff
gptkbp:requires Diversity among models
gptkbp:usedFor Improving predictive performance
gptkbp:bfsParent gptkb:Gina_Kuncheva
gptkbp:bfsLayer 7