DQN

GPTKB entity

Statements (62)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:applies_to gptkb:Atari_Games
reinforcement learning
gptkbp:developed_by gptkb:Volodymyr_Mnih
gptkbp:has_achieved Atari game performance
gptkbp:has_applications_in gptkb:robotics
healthcare
finance
https://www.w3.org/2000/01/rdf-schema#label DQN
gptkbp:improves Q-learning
gptkbp:inspired_by Q-learning
gptkbp:is_analyzed_in gptkb:vehicles
AI safety
multi-agent systems
gptkbp:is_applied_in gptkb:Atari_Games
gptkbp:is_based_on gptkb:neural_networks
gptkbp:is_compared_to gptkb:A3_C
gptkb:DDPG
TRPO
gptkbp:is_enhanced_by gptkb:Double_DQN
gptkb:Dueling_DQN
Prioritized Experience Replay
gptkbp:is_evaluated_by performance metrics
Atari 2600 games
human benchmarks
gptkbp:is_implemented_in gptkb:Python
gptkbp:is_influenced_by biological neural networks
human learning
gptkbp:is_noted_for convergence speed
modularity
scalability
real-time decision making
adaptability
stability issues
sample efficiency
exploration strategies
robustness to noise
generalization capabilities
flexibility in architecture
transfer learning potential
gptkbp:is_part_of gptkb:Tensor_Flow
gptkb:Deep_Reinforcement_Learning
gptkb:gymnasium
gptkb:Py_Torch
gptkbp:is_related_to policy gradient methods
gptkbp:is_trained_in large datasets
gptkbp:is_used_for decision making
game playing
control tasks
gptkbp:is_used_in video game AI
gptkbp:published_in gptkb:Nature
gptkbp:requires high computational power
gptkbp:uses deep learning
gptkbp:utilizes experience replay
target network
gptkbp:year_created gptkb:2013
gptkbp:bfsParent gptkb:Stable_Baselines
gptkb:Deep_Mind
gptkb:Keras-RL
gptkb:Lunar_Lander-v2
gptkb:Open_AI_Baselines
gptkbp:bfsLayer 5