DQN

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:philosopher
gptkbp:applies_to gptkb:Atari_Games
reinforcement learning
gptkbp:based_on gptkb:microprocessor
gptkbp:developed_by gptkb:Volodymyr_Mnih
gptkbp:has_achievements Atari game performance
gptkbp:has_programs gptkb:robot
healthcare
finance
https://www.w3.org/2000/01/rdf-schema#label DQN
gptkbp:improves Q-learning
gptkbp:inspired_by Q-learning
gptkbp:is_analyzed_in gptkb:engine
AI safety
multi-agent systems
gptkbp:is_compared_to gptkb:A3_C
gptkb:DDPG
TRPO
gptkbp:is_enhanced_by gptkb:Double_DQN
gptkb:Dueling_DQN
Prioritized Experience Replay
gptkbp:is_evaluated_by performance metrics
Atari 2600 games
human benchmarks
gptkbp:is_implemented_in gptkb:Library
gptkbp:is_influenced_by biological neural networks
human learning
gptkbp:is_noted_for convergence speed
modularity
scalability
real-time decision making
adaptability
stability issues
sample efficiency
exploration strategies
robustness to noise
generalization capabilities
flexibility in architecture
transfer learning potential
gptkbp:is_part_of gptkb:Deep_Reinforcement_Learning
gptkb:Graphics_Processing_Unit
gptkb:stadium
gptkb:Py_Torch
gptkbp:is_related_to policy gradient methods
gptkbp:is_used_for decision making
game playing
control tasks
gptkbp:is_used_in video game AI
gptkbp:published_by gptkb:Nature
gptkbp:requires high computational power
gptkbp:training large datasets
gptkbp:uses deep learning
gptkbp:utilizes experience replay
target network
gptkbp:year_created gptkb:2013