Cresnet 2.0

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 6
gptkbp:bfsParent gptkb:Crestron
gptkbp:applies_to Image Classification
gptkbp:architectural_style gptkb:Deep_Residual_Networks
gptkbp:developed_by gptkb:Kaiming_He
gptkbp:has_achievements State-of-the-art Performance
gptkbp:has_variants gptkb:Cresnet_101
gptkb:Cresnet_152
gptkb:Cresnet_50
https://www.w3.org/2000/01/rdf-schema#label Cresnet 2.0
gptkbp:improves Gradient Flow
gptkbp:influenced_by VGG Net
gptkbp:is_compared_to gptkb:Mobile_Net
gptkb:Dense_Net
gptkb:Res_Net
gptkb:Inception_Networks
gptkb:Squeeze_Net
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:CIFAR-100
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_known_for gptkb:Batch_Normalization
Flexibility
Scalability
Robustness
High Accuracy
Reduced Overfitting
Skip Connections
Layer Normalization
Efficient Training
Deep Feature Learning
gptkbp:is_optimized_for Deep Learning Tasks
gptkbp:is_part_of gptkb:AI_Research
gptkb:Artificial_Intelligence
gptkb:software_framework
gptkb:Deep_Learning
Image Recognition
Object Detection
Feature Extraction
Deep Learning Frameworks
Semantic Segmentation
Neural Network Models
Computer Vision Research
gptkbp:is_used_by gptkb:physicist
Industry Professionals
gptkbp:is_used_in gptkb:Autonomous_Vehicles
gptkb:viewpoint
gptkb:software
gptkb:software_framework
gptkb:studio
Time Series Analysis
Facial Recognition
Medical Imaging
Video Analysis
gptkbp:release_year gptkb:2016
gptkbp:supports gptkb:streaming_service
gptkbp:training Large Datasets
gptkbp:uses Residual Learning