Cresnet 152

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 7
gptkbp:bfsParent gptkb:Cresnet_2.0
gptkbp:contains 152 layers
gptkbp:developed_by gptkb:Kaiming_He
https://www.w3.org/2000/01/rdf-schema#label Cresnet 152
gptkbp:improves gradient flow
gptkbp:industry gptkb:musician
gptkb:Photographer
augmented reality
facial recognition
automated driving
gptkbp:is_adept_at top-5 accuracy of 7.3% on Image Net
gptkbp:is_analyzed_in transfer learning
feature extraction
fine-tuning
gptkbp:is_cited_in research articles
academic papers
theses
gptkbp:is_compared_to gptkb:Inception
gptkb:Dense_Net
VGG Net
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:SVHN
gptkb:CIFAR-100
top-5 accuracy
top-1 accuracy
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_known_for flexibility
high performance
scalability
deep residual learning
gptkbp:is_optimized_for gptkb:Adam_optimizer
Stochastic Gradient Descent
gptkbp:is_part_of gptkb:Res_Net_family
Kaggle competitions
AI frameworks
AI challenges
deep learning libraries
computer vision toolkits
gptkbp:is_popular_in computer vision
gptkbp:is_supported_by NVIDIAGP Us
TP Us
gptkbp:is_used_for image classification
gptkbp:is_used_in object detection
image segmentation
gptkbp:performance deep learning models
gptkbp:reduces vanishing gradient problem
gptkbp:training gptkb:Image_Net_dataset
data augmentation
dropout
batch normalization
gptkbp:utilizes residual learning
gptkbp:year_created gptkb:2015