Cresnet 164

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 8
gptkbp:bfsParent gptkb:Cresnet_50
gptkbp:application Image Classification
gptkbp:architectural_style gptkb:Residual_Network
gptkbp:coat_of_arms 164
gptkbp:developed_by gptkb:Microsoft_Research
gptkbp:established Re LU
gptkbp:features Skip Connections
gptkbp:field_of_study gptkb:viewpoint
gptkb:Deep_Learning
https://www.w3.org/2000/01/rdf-schema#label Cresnet 164
gptkbp:input_output 224x224
gptkbp:is_a_framework_for gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_optimized_for Stochastic Gradient Descent
gptkbp:losses Cross-Entropy Loss
gptkbp:notable_feature gptkb:Deep_Residual_Learning
gptkb:Batch_Normalization
Global Average Pooling
gptkbp:performance Top-5 Accuracy
gptkbp:predecessor gptkb:Cresnet_152
gptkbp:provides_information_on gptkb:Image_Net
gptkbp:related_to gptkb:streaming_service
gptkb:microprocessor
gptkb:AI_Ethics
gptkb:API
gptkb:software
gptkb:Dropout
gptkb:engine
gptkb:Image_Net_Challenge
Backpropagation
Convolutional Layers
Data Augmentation
Fully Connected Layers
Pooling Layers
Overfitting
Underfitting
Feature Extraction
Neural Network Training
Regularization
Model Evaluation
Bias in AI
Gradient Descent
Ensemble Learning
AI Governance
Model Interpretability
Fine-tuning
Model Compression
AI Fairness
AI Policy
AI Regulation
Learning Rate Scheduling
Activation Layers
gptkbp:resolution 1000 classes
gptkbp:successor Cresnet 200
gptkbp:training varies
gptkbp:year_created gptkb:2017