|
gptkbp:instanceOf
|
gptkb:probabilistic_graphical_model
|
|
gptkbp:alsoKnownAs
|
gptkb:belief_network
gptkb:Boltzmann_machine
gptkb:Bayes_net
|
|
gptkbp:application
|
gptkb:diagnosis
gptkb:gene_regulatory_networks
information retrieval
robotics
speech recognition
bioinformatics
image processing
risk analysis
fraud detection
forecasting
|
|
gptkbp:canBe
|
learned from data
specified by experts
|
|
gptkbp:component
|
edges
nodes
conditional probability tables
|
|
gptkbp:describes
|
joint probability distribution
|
|
gptkbp:field
|
gptkb:artificial_intelligence
computer science
data science
statistics
|
|
gptkbp:inventedBy
|
gptkb:Judea_Pearl
|
|
gptkbp:limitation
|
cannot represent cyclic dependencies
complexity increases with number of variables
|
|
gptkbp:namedAfter
|
gptkb:Thomas_Bayes
|
|
gptkbp:property
|
gptkb:graphical_model
acyclic
encodes conditional independence
|
|
gptkbp:relatedTo
|
gptkb:Markov_network
causal inference
probabilistic reasoning
|
|
gptkbp:represents
|
set of variables and their conditional dependencies
|
|
gptkbp:standardizedBy
|
gptkb:XMLBIF_format
BIF format
|
|
gptkbp:supportsAlgorithm
|
gptkb:Markov_Chain_Monte_Carlo
belief propagation
expectation-maximization
variable elimination
junction tree algorithm
|
|
gptkbp:usedFor
|
gptkb:diagnosis
gptkb:machine_learning
decision making
probabilistic inference
|
|
gptkbp:uses
|
gptkb:directed_acyclic_graph
|
|
gptkbp:bfsParent
|
gptkb:Bayesian_Network
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
Bayes network
|