|
gptkbp:instanceOf
|
gptkb:probabilistic_graphical_model
|
|
gptkbp:alsoKnownAs
|
gptkb:Markov_random_field
|
|
gptkbp:application
|
natural language processing
spatial statistics
image segmentation
protein structure prediction
|
|
gptkbp:component
|
gptkb:clique
gptkb:node
edge
potential function
|
|
gptkbp:contrastsWith
|
directed graphical model
|
|
gptkbp:describedBy
|
gptkb:Judea_Pearl,_1988
A. P. Dempster, 1972
|
|
gptkbp:field
|
gptkb:artificial_intelligence
gptkb:mathematics
statistics
|
|
gptkbp:hasModel
|
conditional independence
|
|
gptkbp:inferenceMethod
|
gptkb:Gibbs_sampling
belief propagation
mean field approximation
|
|
gptkbp:namedAfter
|
gptkb:Andrey_Markov
|
|
gptkbp:parameterLearning
|
maximum likelihood estimation
pseudo-likelihood estimation
|
|
gptkbp:property
|
gptkb:Markov_property
|
|
gptkbp:relatedTo
|
gptkb:Ising_model
gptkb:conditional_random_field
gptkb:Gibbs_distribution
gptkb:Boltzmann_machine
factor graph
|
|
gptkbp:represents
|
joint probability distribution
|
|
gptkbp:structure
|
gptkb:graph
|
|
gptkbp:usedIn
|
gptkb:machine_learning
computer vision
image processing
statistical physics
|
|
gptkbp:bfsParent
|
gptkb:Bayesian_Network
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
Markov network
|