perceptron

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Mc_Culloch-Pitts_neuron_model
gptkb:Mc_Culloch-Pitts_neuron
gptkb:Mc_Culloch-Pitts_Neuron
gptkbp:adapted_into multi-class classification
gptkbp:allows non-linear problems
linearly separable data
gptkbp:analyzes decision boundary
2 D space
gptkbp:can_be_extended_by gptkb:multi-layer_perceptron
gptkbp:can_be_used_with other algorithms
gptkbp:developed_by gptkb:Frank_Rosenblatt
gptkbp:established step function
gptkbp:field computational neuroscience
gptkbp:has_programs image processing
https://www.w3.org/2000/01/rdf-schema#label perceptron
gptkbp:influenced_by biological neurons
gptkbp:input_output binary output
real-valued numbers
gptkbp:is_a binary classifier
linear classifier
single-layer neural network
supervised learning model
gptkbp:is_analyzed_in gptkb:Artificial_Intelligence
gptkbp:is_associated_with feature extraction
gptkbp:is_compared_to support vector machines
gptkbp:is_enhanced_by ensemble methods
gptkbp:is_evaluated_by accuracy
confusion matrix
loss function
training dataset
gptkbp:is_fundamental_to deep learning
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
various programming languages
gptkbp:is_influenced_by gptkb:psychologist
gptkbp:is_optimized_for regularization techniques
gptkbp:is_part_of gptkb:software_framework
data science
predictive modeling
artificial intelligence systems
gptkbp:is_related_to gptkb:microprocessor
data mining
feature selection
gptkbp:is_tested_for test dataset
gptkbp:is_used_by natural language processing
gptkbp:is_used_for binary classification
signal processing
gptkbp:is_used_in gptkb:robot
financial forecasting
pattern recognition
spam detection
healthcare analytics
gptkbp:training supervised learning
labeled data
gradient descent
machine learning courses
gptkbp:year_created gptkb:1958