one-shot learning

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:application gptkb:robot
image recognition
natural language processing
gptkbp:benefits improved efficiency
faster training time
reduced labeling costs
requires less training data
gptkbp:challenges overfitting risk
generalization to unseen classes
gptkbp:defines a type of machine learning where a model learns information about object categories from a single training example.
gptkbp:example speech recognition
object detection
handwriting recognition
face recognition
gptkbp:future_plans applications in healthcare
improvements in user experience
advancements in neural networks
enhancements in robotics
potential in personalized AI
https://www.w3.org/2000/01/rdf-schema#label one-shot learning
gptkbp:is_compared_to deep learning
traditional machine learning
gptkbp:is_evaluated_by gptkb:municipality
F1 score
accuracy
precision
Euclidean distance
cosine similarity
Mahalanobis distance
gptkbp:provides_information_on gptkb:Stanford_Dogs
gptkb:CUB-200-2011
gptkb:Celeb_A
gptkb:Mini_Image_Net
gptkb:Omniglot
gptkbp:related_to transfer learning
few-shot learning
gptkbp:research_areas gptkb:Artificial_Intelligence
cognitive science
computer vision
gptkbp:technique gptkb:Siamese_networks
data augmentation
feature extraction
meta-learning
memory-augmented neural networks
prototypical networks
gptkbp:bfsParent gptkb:GPT-3
gptkbp:bfsLayer 4