Siamese networks

GPTKB entity

Statements (63)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:adapted_into multi-modal learning
gptkbp:analyzes t-SNE
gptkbp:are_effective_for few-shot learning
gptkbp:can_be_fine-tuned_with transfer learning
gptkbp:can_be_used_for gptkb:virtual_reality
gptkb:robotics
language translation
augmented reality
data visualization
question answering
time series analysis
data mining
predictive modeling
sentiment analysis
customer segmentation
data augmentation
data compression
fraud detection
self-driving cars
social network analysis
data clustering
spam detection
feature extraction
anomaly detection
chatbot development
knowledge discovery
text classification
text similarity
game AI
image similarity
metric learning
video similarity
gptkbp:can_be_used_in recommendation systems
medical image analysis
gptkbp:can_be_used_to detect anomalies
match pairs of data
gptkbp:can_handle variable input sizes
gptkbp:compare two input samples
gptkbp:consists_of two identical subnetworks
gptkbp:developed_by gptkb:one-shot_learning
gptkbp:first_introduced Bromley et al.
https://www.w3.org/2000/01/rdf-schema#label Siamese networks
gptkbp:input_output similarity score
gptkbp:is_applied_in natural language processing
biometric identification
gptkbp:is_designed_to learn embeddings
gptkbp:is_evaluated_by accuracy metrics
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
convolutional layers
recurrent layers
gptkbp:is_popular_in computer vision
gptkbp:is_related_to twin networks
gptkbp:is_trained_in labeled datasets
contrastive loss
triplet loss
gptkbp:used_in image recognition
signature verification
face verification
gptkbp:bfsParent gptkb:Few-Shot_Learning
gptkb:one-shot_learning
gptkbp:bfsLayer 6