Statements (23)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:academic_journal
|
gptkbp:allows |
We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously.
|
gptkbp:arXivID |
1511.06464
|
gptkbp:author |
gptkb:Shaoqing_Ren
gptkb:Xiangyu_Zhang gptkb:Jian_Sun gptkb:Kaiming_He |
gptkbp:citesDataset |
gptkb:ImageNet
|
gptkbp:doi |
10.1109/CVPR.2016.90
|
gptkbp:fieldOfStudy |
gptkb:artificial_intelligence
computer vision deep learning |
gptkbp:hasMethod |
gptkb:ResNet
|
https://www.w3.org/2000/01/rdf-schema#label |
arXiv:1511.06464
|
gptkbp:language |
English
|
gptkbp:pages |
9
|
gptkbp:primaryCategory |
cs.CV
|
gptkbp:publicationDate |
2015-12-10
|
gptkbp:publishedIn |
gptkb:CVPR_2016
|
gptkbp:title |
gptkb:Deep_Residual_Learning_for_Image_Recognition
|
gptkbp:url |
https://arxiv.org/abs/1511.06464
|
gptkbp:bfsParent |
gptkb:Efficiently_Updatable_Neural_Network
|
gptkbp:bfsLayer |
8
|