Statements (58)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:cosmic_ray_detector
|
gptkbp:application |
gptkb:robotics
Surveillance Autonomous driving Video analysis |
gptkbp:architecture |
gptkb:neural_networks
|
gptkbp:based_on |
gptkb:YOLOv4
|
gptkbp:community_support |
User forums
Tutorials available Active Git Hub repository |
gptkbp:developed_by |
gptkb:Joseph_Redmon
|
gptkbp:evaluates |
Custom datasets
Benchmark datasets m AP (mean Average Precision) FPS (Frames Per Second) |
gptkbp:features |
High speed
Good accuracy Lightweight model |
https://www.w3.org/2000/01/rdf-schema#label |
YOLOv4-tiny
|
gptkbp:input_output |
RGB images
416x416 pixels Bounding boxes and class probabilities Class labels Confidence scores JSON or CSV |
gptkbp:is_a_framework_for |
gptkb:Deep_Learning
|
gptkbp:is_compared_to |
gptkb:Faster_R-CNN
gptkb:YOLOv3 gptkb:SSD |
gptkbp:is_optimized_for |
Real-time object detection
|
gptkbp:license |
GPL-3.0
|
gptkbp:model |
6.9 MB
|
gptkbp:performance |
High precision
Real-time performance High recall Faster than YOLOv4 |
gptkbp:provides_information_on |
gptkb:COCO_dataset
|
gptkbp:release_date |
gptkb:2020
|
gptkbp:requires |
NVIDIA GPU for optimal performance
|
gptkbp:successor |
gptkb:YOLOv5
|
gptkbp:supports |
ONNX format
Tensor RT optimization Multi-class detection Multi-object detection |
gptkbp:training |
Fine-tuning on specific datasets
Shorter than YOLOv4 Transfer learning from YOLOv4 |
gptkbp:uses |
Data augmentation
Transfer learning Batch normalization Skip connections Darknet framework Leaky Re LU activation Dropout layers Data preprocessing techniques |
gptkbp:written_in |
C and CUDA
|
gptkbp:bfsParent |
gptkb:YOLO_family
|
gptkbp:bfsLayer |
7
|