YOLOv4-tiny

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:cosmic_ray_detector
gptkbp:application gptkb:robotics
Surveillance
Autonomous driving
Video analysis
gptkbp:architecture gptkb:neural_networks
gptkbp:based_on gptkb:YOLOv4
gptkbp:community_support User forums
Tutorials available
Active Git Hub repository
gptkbp:developed_by gptkb:Joseph_Redmon
gptkbp:evaluates Custom datasets
Benchmark datasets
m AP (mean Average Precision)
FPS (Frames Per Second)
gptkbp:features High speed
Good accuracy
Lightweight model
https://www.w3.org/2000/01/rdf-schema#label YOLOv4-tiny
gptkbp:input_output RGB images
416x416 pixels
Bounding boxes and class probabilities
Class labels
Confidence scores
JSON or CSV
gptkbp:is_a_framework_for gptkb:Deep_Learning
gptkbp:is_compared_to gptkb:Faster_R-CNN
gptkb:YOLOv3
gptkb:SSD
gptkbp:is_optimized_for Real-time object detection
gptkbp:license GPL-3.0
gptkbp:model 6.9 MB
gptkbp:performance High precision
Real-time performance
High recall
Faster than YOLOv4
gptkbp:provides_information_on gptkb:COCO_dataset
gptkbp:release_date gptkb:2020
gptkbp:requires NVIDIA GPU for optimal performance
gptkbp:successor gptkb:YOLOv5
gptkbp:supports ONNX format
Tensor RT optimization
Multi-class detection
Multi-object detection
gptkbp:training Fine-tuning on specific datasets
Shorter than YOLOv4
Transfer learning from YOLOv4
gptkbp:uses Data augmentation
Transfer learning
Batch normalization
Skip connections
Darknet framework
Leaky Re LU activation
Dropout layers
Data preprocessing techniques
gptkbp:written_in C and CUDA
gptkbp:bfsParent gptkb:YOLO_family
gptkbp:bfsLayer 7