Xception architecture

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Deep_Lab
gptkbp:based_on Inception model
gptkbp:consists_of 14 convolutional layers
gptkbp:developed_by gptkb:François_Chollet
gptkbp:has Pre-trained models available
gptkbp:has_achievements State-of-the-art performance on Image Net
https://www.w3.org/2000/01/rdf-schema#label Xception architecture
gptkbp:is_compared_to gptkb:Res_Net
gptkb:Inception-v3
VGG Net
gptkbp:is_evaluated_by gptkb:LFW
gptkb:CIFAR-10
gptkb:SVHN
gptkb:Stanford_Dogs_dataset
gptkb:Celeb_A
gptkb:Fashion_MNIST
gptkb:CIFAR-100
Oxford Pets dataset
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkbp:is_known_for Scalability
High accuracy
Low latency
High throughput
Batch normalization
Robustness to overfitting
Dropout regularization
Residual connections
Efficiency in parameter usage
Layer-wise learning rate adjustment
gptkbp:is_optimized_for GPU acceleration
TPU acceleration
gptkbp:is_part_of gptkb:Keras_Applications
gptkb:Tensor_Flow_Model_Garden
gptkbp:is_related_to Transfer learning
gptkbp:is_supported_by gptkb:document
Research papers
Community contributions
Online tutorials
gptkbp:is_used_in Image segmentation
Feature extraction
Data augmentation
Hyperparameter tuning
Fine-tuning
Facial recognition
Video analysis
Adversarial training
Object detection
Generative models
Style transfer
Medical image analysis
Image classification tasks
gptkbp:release_year gptkb:2017
gptkbp:suitable_for Mobile applications
Real-time image processing
gptkbp:training gptkb:Image_Net_dataset
gptkbp:uses Depthwise Separable Convolutions