gptkbp:instance_of
|
gptkb:Transformers
|
gptkbp:application
|
Medical imaging
Autonomous driving
Facial recognition
Video analysis
Image generation
Image classification
Object detection
Semantic segmentation
|
gptkbp:architectural_style
|
gptkb:Transformers
|
gptkbp:architecture
|
gptkb:Transformers
|
gptkbp:batch_size
|
gptkb:32
|
gptkbp:components
|
Layer normalization
Multi-head attention
Residual connections
Feed-forward network
|
gptkbp:developed_by
|
gptkb:Google_Research
|
gptkbp:drops
|
0.1
|
gptkbp:evaluates
|
gptkb:CIFAR-10
gptkb:Stanford_Dogs
gptkb:CIFAR-100
F1 score
Oxford Pets
|
gptkbp:feature
|
Data augmentation
Fine-tuning
self-attention mechanism
positional encoding
Global average pooling
Gradient clipping
Attention maps
Class token
Image normalization
Interpretability tools
Layer-wise learning rate decay
Model ensembling
Patch size 16x16
Transferable features
patch embeddings
|
gptkbp:has_website
|
Computer vision
|
https://www.w3.org/2000/01/rdf-schema#label
|
Vi T-B
|
gptkbp:influenced_by
|
gptkb:Attention_is_All_You_Need
|
gptkbp:initialization_method
|
Xavier initialization
|
gptkbp:initiated_by
|
Ge LU
|
gptkbp:input_output
|
224x224
|
gptkbp:is_taught_in
|
0.001
|
gptkbp:losses
|
Cross-entropy loss
|
gptkbp:num_parameters
|
86 million
|
gptkbp:orbital_period
|
86 million
|
gptkbp:performance
|
Top-1 accuracy
88.55%
|
gptkbp:predecessor
|
CNNs
|
gptkbp:provides_information_on
|
gptkb:Image_Net
1.2 million images
|
gptkbp:related_to
|
Deep learning
Neural networks
|
gptkbp:release_year
|
gptkb:2020
|
gptkbp:resolution
|
1000 classes
224x224 pixels
|
gptkbp:successor
|
gptkb:Vi_T-L
|
gptkbp:training
|
Supervised learning
|
gptkbp:training_programs
|
gptkb:Tensor_Flow
gptkb:Py_Torch
|
gptkbp:tuning
|
gptkb:Adam_optimizer
|
gptkbp:uses
|
Transfer learning
Self-Attention Mechanism
|
gptkbp:bfsParent
|
gptkb:Transformers
|
gptkbp:bfsLayer
|
4
|