U-Net with Attention

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:adapted_into Various Input Sizes
gptkbp:applies_to Medical Imaging
gptkbp:based_on gptkb:Alumni_Association
gptkbp:benefits Noisy Data
gptkbp:can_be_extended_by Other Attention Mechanisms
gptkbp:challenges Train Without Overfitting
gptkbp:developed_by gptkb:Olaf_Ronneberger
gptkbp:enhances Feature Extraction
https://www.w3.org/2000/01/rdf-schema#label U-Net with Attention
gptkbp:improves Segmentation Accuracy
gptkbp:introduced gptkb:2015
gptkbp:is_characterized_by Skip Connections
Downsampling Layers
Upsampling Layers
gptkbp:is_compared_to gptkb:Standard_U-Net
gptkbp:is_designed_for Image Segmentation
gptkbp:is_effective_against Real-Time Applications
gptkbp:is_evaluated_by Cross-Validation
Benchmark Datasets
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_optimized_for GPU Acceleration
gptkbp:is_popular_in Research Papers
Deep Learning Community
gptkbp:is_used_for Semantic Segmentation
gptkbp:is_used_in gptkb:healthcare_organization
gptkb:software
gptkb:museum
Autonomous Driving
Biometrics
Medical Diagnosis
Object Detection
Facial Recognition
Image-to-Image Translation
Agricultural Monitoring
Histopathology
Tumor Detection
Image Restoration
Video Analysis
Text Recognition
Satellite Image Analysis
3 D Reconstruction
Cell Segmentation
Organ Segmentation
Pathology Analysis
gptkbp:requires Less Training Data
gptkbp:utilizes Attention Mechanism
gptkbp:bfsParent gptkb:Attention_U-Net
gptkbp:bfsLayer 4