Stacked LSTM

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:LSTM
gptkb:Long_Short-Term_Memory_Network
gptkbp:analyzes accuracy curves
loss curves
model architecture diagrams
gptkbp:applies_to time series data
gptkbp:can_be_used_with dropout layers
gptkbp:composed_of multiple LSTM layers
gptkbp:enhances feature extraction
https://www.w3.org/2000/01/rdf-schema#label Stacked LSTM
gptkbp:improves model capacity
gptkbp:is_challenged_by vanishing gradient problem
exploding gradient problem
gptkbp:is_characterized_by long-term dependencies
cell states
gated mechanisms
hidden states
gptkbp:is_evaluated_by gptkb:municipality
performance metrics
F1 score
confusion matrix
cross-validation
precision
train-test split
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkb:Theano
MX Net
gptkbp:is_optimized_for gradient clipping
gptkbp:is_part_of deep learning
gptkbp:is_popular_in machine learning community
gptkbp:is_related_to gptkb:GRU
gptkb:CNN
Bidirectional LSTM
gptkbp:is_tested_for real-world applications
benchmark datasets
gptkbp:is_used_for financial forecasting
speech recognition
video analysis
sequence prediction
gptkbp:is_used_in gptkb:robot
natural language processing
climate modeling
text generation
anomaly detection
image captioning
music generation
game AI
healthcare data analysis
gptkbp:requires large datasets
gptkbp:suitable_for vanilla RNN
simple LSTM
gptkbp:training backpropagation through time
gptkbp:tuning hyperparameter optimization