gptkbp:instance_of
|
gptkb:microprocessor
|
gptkbp:allows
|
computationally intensive
difficult to interpret
requires large datasets
|
gptkbp:can_be_used_with
|
gptkb:television_channel
Attention Mechanisms
|
gptkbp:developed_by
|
gptkb:Jürgen_Schmidhuber
gptkb:Sepp_Hochreiter
|
gptkbp:game_components
|
cell state
forget gate
input gate
output gate
|
gptkbp:has_programs
|
gptkb:robot
healthcare
finance
machine translation
anomaly detection
language modeling
image captioning
music generation
|
gptkbp:has_variants
|
gptkb:Bi-directional_LSTM
gptkb:Stacked_LSTM
Attention-based LSTM
|
https://www.w3.org/2000/01/rdf-schema#label
|
LSTM
|
gptkbp:improves
|
vanishing gradient problem
|
gptkbp:introduced
|
gptkb:1997
|
gptkbp:is_characterized_by
|
forget gate
input gate
memory cell
output gate
|
gptkbp:is_compared_to
|
gptkb:television_channel
Standard RN Ns
feedforward neural networks
traditional RN Ns
|
gptkbp:is_evaluated_by
|
gptkb:municipality
F1 score
accuracy
precision
loss function
|
gptkbp:is_implemented_in
|
gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
|
gptkbp:is_known_for
|
handling long-range dependencies
reducing overfitting
handling long-term dependencies
|
gptkbp:is_part_of
|
gptkb:software_framework
deep learning
|
gptkbp:is_popular_in
|
gptkb:film_production_company
gptkb:robot
gptkb:Research_Institute
healthcare
finance
data science
academia
|
gptkbp:is_related_to
|
gptkb:microprocessor
gptkb:physicist
gptkb:Artificial_Intelligence
gptkb:Big_Data
gptkb:Gated_Recurrent_Unit_(GRU)
gptkb:Gated_Recurrent_Unit
|
gptkbp:is_supported_by
|
gptkb:Job_Search_Engine
gptkb:DJ
gptkb:Microsoft
|
gptkbp:is_used_by
|
gptkb:Job_Search_Engine
gptkb:Microsoft
gptkb:CEO
gptkb:Twitter_account
gptkb:book
|
gptkbp:is_used_for
|
natural language processing
speech recognition
video analysis
time series forecasting
sequence prediction
|
gptkbp:is_used_in
|
gptkb:software_framework
language translation
sentiment analysis
chatbots
anomaly detection
image generation
|
gptkbp:training
|
gradient descent
backpropagation through time
|
gptkbp:tuning
|
hyperparameters
learning rate
number of layers
batch size
number of units per layer
|
gptkbp:bfsParent
|
gptkb:Recurrent_Neural_Networks
gptkb:Gated_Recurrent_Unit_(GRU)
|
gptkbp:bfsLayer
|
4
|