GPTKB
Browse
Query
Compare
Download
Publications
Contributors
Search
Sparse Multinomial Logistic Regression
URI:
https://gptkb.org/entity/Sparse_Multinomial_Logistic_Regression
GPTKB entity
Statements (32)
Predicate
Object
gptkbp:instanceOf
gptkb:model
statistical analysis
gptkbp:advantage
automatic feature selection
sparse solutions
gptkbp:application
bioinformatics
image recognition
text classification
gptkbp:author
gptkb:John_D._Lafferty
gptkb:Andrew_McCallum
gptkb:Fernando_Pereira
gptkbp:basedOn
logistic regression
gptkbp:citation
gptkb:Lafferty,_McCallum,_Pereira,_2001
gptkbp:featureSelection
yes
https://www.w3.org/2000/01/rdf-schema#label
Sparse Multinomial Logistic Regression
gptkbp:implementedIn
gptkb:LIBLINEAR
gptkb:scikit-learn
R glmnet package
gptkbp:input
feature vectors
gptkbp:limitation
computationally intensive for large datasets
requires tuning of regularization parameter
gptkbp:optimizedFor
convex optimization
gptkbp:output
probabilities for each class
gptkbp:publishedIn
gptkb:NIPS_2001
gptkbp:regularization
lasso
L1 regularization
gptkbp:relatedTo
gptkb:lasso_regression
softmax regression
multinomial logistic regression
gptkbp:usedFor
gptkb:dictionary
multiclass classification
gptkbp:bfsParent
gptkb:SMLR
gptkbp:bfsLayer
6