Slutsky's theorem

GPTKB entity

Statements (21)
Predicate Object
gptkbp:instanceOf gptkb:mathematical_concept
gptkbp:appliesTo random variables
gptkbp:category probability theorems
statistical theorems
gptkbp:describes convergence in probability
convergence in distribution
gptkbp:field gptkb:probability_theory
statistics
https://www.w3.org/2000/01/rdf-schema#label Slutsky's theorem
gptkbp:namedAfter Evgeny Slutsky
gptkbp:publishedIn 1925
gptkbp:relatedTo gptkb:central_limit_theorem
gptkb:law_of_large_numbers
gptkbp:state If X_n converges in distribution to X and Y_n converges in probability to a constant c, then X_n + Y_n converges in distribution to X + c.
If X_n converges in distribution to X and Y_n converges in probability to c ≠ 0, then X_n / Y_n converges in distribution to X / c.
If X_n converges in distribution to X and Y_n converges in probability to c, then X_n Y_n converges in distribution to Xc.
gptkbp:usedIn statistical inference
asymptotic analysis
gptkbp:bfsParent gptkb:Eugen_Slutsky
gptkb:Mathematical_Statistics
gptkbp:bfsLayer 8