|
gptkbp:instanceOf
|
gptkb:unsupervised_learning_algorithm
gptkb:convolutional_neural_network
|
|
gptkbp:alsoKnownAs
|
gptkb:Kohonen_map
SOM
|
|
gptkbp:application
|
speech recognition
bioinformatics
image analysis
anomaly detection
market segmentation
|
|
gptkbp:category
|
gptkb:artificial_intelligence
gptkb:machine_learning
pattern recognition
data mining
|
|
gptkbp:citation
|
gptkb:IEEE_Transactions_on_Neural_Networks
Self-Organizing Maps (book by Teuvo Kohonen)
|
|
gptkbp:feature
|
neighborhood function
topology preservation
weight adaptation
|
|
gptkbp:influencedBy
|
biological neural networks
|
|
gptkbp:input
|
high-dimensional data
|
|
gptkbp:introducedIn
|
1982
|
|
gptkbp:inventedBy
|
gptkb:Teuvo_Kohonen
|
|
gptkbp:limitation
|
gptkb:curse_of_dimensionality
parameter sensitivity
interpretability for large maps
|
|
gptkbp:openSource
|
gptkb:SOM_Toolbox
gptkb:MiniSom
gptkb:SOMPY
Kohonen package (R)
|
|
gptkbp:output
|
low-dimensional grid
|
|
gptkbp:parameter
|
learning rate
number of iterations
grid size
neighborhood radius
|
|
gptkbp:relatedTo
|
gptkb:principal_component_analysis
clustering algorithms
vector quantization
|
|
gptkbp:supportsAlgorithm
|
competitive learning
|
|
gptkbp:trainer
|
unsupervised learning
|
|
gptkbp:trainingStep
|
winner-takes-all
neighborhood update
weight adjustment
|
|
gptkbp:usedFor
|
gptkb:data_visualization
clustering
dimensionality reduction
|
|
gptkbp:visualizes
|
gptkb:U-matrix
component planes
|
|
gptkbp:bfsParent
|
gptkb:SOMPY
|
|
gptkbp:bfsLayer
|
9
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
Self-Organizing Maps
|