|
gptkbp:instanceOf
|
gptkb:unsupervised_learning_algorithm
gptkb:convolutional_neural_network
|
|
gptkbp:abbreviation
|
SOM
|
|
gptkbp:activatedBy
|
winner-takes-all
|
|
gptkbp:alternativeName
|
gptkb:Kohonen_map
gptkb:Kohonen_network
|
|
gptkbp:application
|
speech recognition
bioinformatics
pattern recognition
feature extraction
data mining
image analysis
market segmentation
|
|
gptkbp:category
|
gptkb:artificial_intelligence
gptkb:machine_learning
data analysis
neural computation
|
|
gptkbp:influencedBy
|
biological neural networks
|
|
gptkbp:input
|
high-dimensional data
|
|
gptkbp:introducedIn
|
1982
|
|
gptkbp:inventedBy
|
gptkb:Teuvo_Kohonen
|
|
gptkbp:learningRule
|
competitive learning
|
|
gptkbp:networkStructure
|
grid of neurons
|
|
gptkbp:neuronArrangement
|
rectangular grid
hexagonal grid
|
|
gptkbp:notablePublication
|
Self-Organizing Maps (book by Teuvo Kohonen)
|
|
gptkbp:openSource
|
gptkb:MiniSom
gptkb:SOMPY
Kohonen package (R)
SOM Toolbox for Matlab
SOM-Learn
|
|
gptkbp:output
|
low-dimensional (typically 2D) map
|
|
gptkbp:parameter
|
learning rate
number of iterations
map size
neighborhood radius
|
|
gptkbp:preserves
|
topological properties of input space
|
|
gptkbp:relatedTo
|
gptkb:principal_component_analysis
k-means clustering
vector quantization
|
|
gptkbp:trainer
|
unsupervised
|
|
gptkbp:updateRule
|
neighborhood function
weight adaptation
|
|
gptkbp:usedFor
|
gptkb:data_visualization
clustering
dimensionality reduction
|
|
gptkbp:visualizes
|
topological map
|
|
gptkbp:bfsParent
|
gptkb:MiniSom
gptkb:SOM_Toolbox_(Matlab)
gptkb:Kohonen_network
|
|
gptkbp:bfsLayer
|
9
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
Self-Organizing Map
|