Sage Maker Studio

GPTKB entity

Statements (70)
Predicate Object
gptkbp:instance_of gptkb:Integrated_Development_Environment
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:temple
gptkbp:allows Collaboration among data scientists
Custom model development
gptkbp:developed_by gptkb:server
gptkbp:enables Model training
Model monitoring
gptkbp:facilitates Data preparation
gptkbp:features Code editor
https://www.w3.org/2000/01/rdf-schema#label Sage Maker Studio
gptkbp:includes Experiment management
gptkbp:integrates_with AWS services
gptkbp:is_accessible_by Web interface
gptkbp:is_compatible_with gptkb:Git
gptkbp:is_designed_for Data scientists
Machine learning workflows
gptkbp:is_part_of gptkb:temple
AWS ecosystem
gptkbp:is_scalable gptkb:battle
gptkbp:is_used_for Data analysis
Business intelligence
Predictive analytics
Data preprocessing
Data transformation
Feature engineering
Hyperparameter tuning
Model evaluation
Data exploration
Data ingestion
Model serving
Data science projects
gptkbp:is_used_in gptkb:Cloud_Computing_Service
gptkbp:offers Resource optimization
Interactive dashboards
Interactive development
Experiment tracking
Built-in algorithms
Deployment options
Customizable environments
Integrated debugging tools
Cloud-based resources
Pre-built environments
gptkbp:provides Collaboration tools
Performance monitoring
Real-time collaboration
Resource management
API access
Visualizations
Security features
User management
Collaboration features
Access to datasets
Machine Learning tools
Integration with ID Es
gptkbp:supports gptkb:Auto_ML
gptkb:Jupyter_notebooks
Version control
Batch processing
Data governance
Multiple programming languages
Third-party integrations
Containerized applications
Data pipelines
Multi-user access
Real-time inference
Model deployment
Data labeling
Data visualization libraries
Model retraining