Auto ML

GPTKB entity

Statements (46)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:application financial forecasting
natural language processing
image classification
recommendation systems
healthcare analytics
gptkbp:applies_to gptkb:Biology
time series forecasting
regression
gptkbp:benefits improves accessibility of machine learning
reduces the need for expert knowledge
speeds up the model development process
gptkbp:challenges requires large datasets
can produce overfitting
may lack interpretability
gptkbp:developed_by gptkb:Google
https://www.w3.org/2000/01/rdf-schema#label Auto ML
gptkbp:includes hyperparameter tuning
model selection
automated feature engineering
gptkbp:is_a_tool_for gptkb:H2_O.ai
gptkb:Auto_Keras
gptkb:Data_Robot
gptkb:Google_Cloud_Auto_ML
gptkb:Microsoft_Azure_Auto_ML
gptkb:TPOT
gptkbp:purpose automate machine learning tasks
gptkbp:research_areas gptkb:machine_learning
data preprocessing
model evaluation
explainable AI
scalable machine learning
gptkbp:technique gptkb:stage_adaptation
gptkb:Neural_Architecture_Search
Ensemble Learning
Meta-Learning
gptkbp:trends increased automation
improvements in user interfaces
wider adoption in industries
enhanced interpretability
integration with big data
gptkbp:bfsParent gptkb:Google_Brain_team
gptkb:Google
gptkb:Google_Brain
gptkb:Neural_Architecture_Search
gptkbp:bfsLayer 4