Sage Maker Debugger

GPTKB entity

Statements (63)
Predicate Object
gptkbp:instance_of gptkb:Sage
gptkbp:allows custom debugging rules
gptkbp:built AWS infrastructure
gptkbp:can_be_combined_with Sage Maker Experiments
gptkbp:can_be_used_for hyperparameter tuning
gptkbp:can_be_used_to reduce training time
monitor resource utilization
track experiments
gptkbp:can_be_used_with custom algorithms
gptkbp:captures tensor data
gptkbp:enables model optimization
automated model debugging
https://www.w3.org/2000/01/rdf-schema#label Sage Maker Debugger
gptkbp:integrates_with gptkb:Sage
gptkbp:is_accessible_by gptkb:AWS_Management_Console
gptkb:AWS_CLI
gptkbp:is_available_for various programming languages
gptkbp:is_available_in gptkb:Sage_Maker_Studio
multiple AWS regions
gptkbp:is_compatible_with gptkb:Tensor_Flow
gptkb:Keras
gptkb:MXNet
gptkb:scikit-learn
gptkb:Py_Torch
gptkbp:is_designed_for data scientists
machine learning engineers
gptkbp:is_documented_in AWS documentation
gptkbp:is_integrated_with gptkb:AWS_Cloud_Watch
gptkb:Jupyter_notebooks
gptkbp:is_optimized_for large datasets
real-time applications
gptkbp:is_part_of AWS ecosystem
MLOps practices
AI development lifecycle
Sage Maker suite
gptkbp:is_scalable enterprise-level applications
gptkbp:is_supported_by AWS support team
gptkbp:is_used_for model evaluation
gptkbp:is_used_in deep learning
gptkbp:is_used_to improve model accuracy
debug training jobs
identify training issues
gptkbp:offers data visualization tools
profiling capabilities
cloud-based debugging
gptkbp:provides real-time alerts
user-friendly interface
data integrity checks
real-time debugging
collaborative debugging
debugging metrics
model performance insights
training job monitoring
gptkbp:security AWS security features
gptkbp:supports model versioning
machine learning models
model deployment
distributed training
batch inference
gptkbp:track training metrics
gptkbp:bfsParent gptkb:AWS_Sage_Maker
gptkb:Sage
gptkbp:bfsLayer 5