SGD optimizer

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:Google
gptkbp:can_be_adjusted_with adaptive learning rates
gptkbp:can_be_combined_with momentum
Nesterov momentum
gptkbp:can_be_sensitive_to initialization of parameters
gptkbp:can_be_used_in online learning
gptkbp:can_be_used_to reduce overfitting
improve model generalization
optimize convex functions
train deep networks
gptkbp:can_be_used_with mini-batch training
gptkbp:can_converge_to local minima
gptkbp:can_lead_to faster convergence
gptkbp:has learning rate
https://www.w3.org/2000/01/rdf-schema#label SGD optimizer
gptkbp:is stochastic gradient descent
first-order optimization algorithm
gptkbp:is_a_foundation_for gptkb:machine_learning
gptkbp:is_a_fundamental_technique_in gptkb:Artificial_Intelligence
gptkbp:is_a_key_component_of reinforcement learning
gptkbp:is_a_standard_method_in statistical learning theory
gptkbp:is_affected_by batch size
data shuffling
gptkbp:is_effective_against large-scale problems
gptkbp:is_enhanced_by learning rate decay
gptkbp:is_essential_for training pipelines
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
regularization techniques
backpropagation
gptkbp:is_known_for simplicity
high variance in updates
gptkbp:is_less_effective_with noisy gradients
gptkbp:is_often_benchmarked_against other optimization algorithms
gptkbp:is_often_compared_to gptkb:Adam_optimizer
gptkbp:is_often_discussed_in optimization research
gptkbp:is_often_the_default_choice_for many frameworks
gptkbp:is_often_used_in gptkb:academic_research
computer vision
natural language processing
real-time applications
cross-validation
gptkbp:is_popular_for training generative models
gptkbp:is_recommended_for large datasets
gptkbp:is_used_for training neural networks
gptkbp:is_used_in support vector machines
gptkbp:minimizes loss function
gptkbp:modifications learning rate schedules
gptkbp:requires hyperparameter tuning
gptkbp:sensitivity learning rate
gptkbp:suitable_for non-convex optimization problems
gptkbp:type_of gradient descent
gptkbp:updates model parameters
gptkbp:used_in gptkb:machine_learning
deep learning
gptkbp:bfsParent gptkb:Keras_Sequential_models
gptkbp:bfsLayer 6