Red Hat Open Shift Data Science

GPTKB entity

Statements (87)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 6
gptkbp:bfsParent gptkb:Open_Shift_AI
gptkbp:constructed_in gptkb:Open_Shift_Container_Platform
gptkbp:developed_by gptkb:Red_Hat
gptkbp:enables Data-driven decision making
Rapid prototyping
Collaboration among data scientists
Experimentation with data
gptkbp:facilitates Deployment of AI models
gptkbp:features gptkb:Jupyter_Notebooks
https://www.w3.org/2000/01/rdf-schema#label Red Hat Open Shift Data Science
gptkbp:includes Collaboration features
Model training capabilities
gptkbp:integrates_with gptkb:chess_match
gptkbp:is_available_for On-premises deployment
gptkbp:is_available_on Cloud platforms
gptkbp:is_compatible_with Third-party tools
Data science frameworks
Data analytics platforms
Various data storage solutions
gptkbp:is_designed_for Enterprise use
Collaborative data science projects
gptkbp:is_designed_to Enhance productivity
Streamline data workflows
gptkbp:is_integrated_with Business applications
Data lakes
Data science libraries
gptkbp:is_optimized_for gptkb:benchmark
gptkbp:is_part_of Cloud-native applications
Digital transformation initiatives
AI and ML strategy
Red Hat Open Shift ecosystem
Data Ops practices
gptkbp:is_scalable Large datasets
gptkbp:is_used_by Data scientists
gptkbp:is_used_for Data preparation
Data model management
gptkbp:is_used_in Predictive analytics
Data exploration
gptkbp:is_used_to Build machine learning models
gptkbp:is_utilized_in Research institutions
Business intelligence
Startups and enterprises alike
Organizations for data analysis
gptkbp:offers Collaboration across teams
User management features
Flexible deployment options
Data integration capabilities
Real-time collaboration features
Customizable environments
Support for data pipelines
Support for various frameworks
Integration with CI/ CD pipelines
Automated machine learning features
Data Science workflows
Scalability for data processing
gptkbp:provides User-friendly interface
Security features
Monitoring tools
Training resources
Documentation and support
Machine Learning tools
Access to pre-built models
Version control for models
Collaboration tools for teams
Access to analytics tools
Access to cloud resources
Access to cloud-native tools
Access to GPU resources
gptkbp:provides_access_to Data sources
gptkbp:supports gptkb:fortification
Real-time data processing
Batch processing
Data governance
Data quality management
Model evaluation
Multi-cloud environments
Data visualization tools
Experiment tracking
Data analysis and reporting
Data sharing among teams
Data security compliance
Python and R programming languages
Data science best practices
Model deployment automation
gptkbp:utilizes gptkb:lake