|
gptkbp:instanceOf
|
gptkb:model
|
|
gptkbp:canBe
|
gptkb:AMP
gptkb:CUDA
gptkb:cathedral
gptkb:Tensor
gptkb:ONNX_Runtime
gptkb:TensorBoard
gptkb:TorchAudio
gptkb:TorchServe
gptkb:TorchText
gptkb:TorchVision
gptkb:TorchScript
gptkb:Lightning
gptkb:Hugging_Face_Transformers
gptkb:Dataset
gptkb:MLflow
gptkb:Weights_&_Biases
gptkb:fastai
Skorch
DataLoader
DistributedDataParallel
|
|
gptkbp:canBeDefinedWith
|
torch.nn.Module
|
|
gptkbp:canBeDeployedOn
|
gptkb:cloud_service
mobile devices
edge devices
|
|
gptkbp:canBeLoadedWith
|
torch.load
|
|
gptkbp:canBeOptimizedWith
|
torch.optim
|
|
gptkbp:canBePruned
|
true
|
|
gptkbp:canBeQuantized
|
true
|
|
gptkbp:canBeSavedAs
|
.pt file
.pth file
|
|
gptkbp:canBeScriptedWith
|
torch.jit
|
|
gptkbp:canBeTracedWith
|
torch.jit.trace
|
|
gptkbp:canBeTrainedWith
|
gptkb:microprocessor
gptkb:graphics_card
|
|
gptkbp:developedBy
|
gptkb:PyTorch
|
|
gptkbp:exportedTo
|
gptkb:ONNX
|
|
gptkbp:supports
|
autograd
dynamic computation graphs
custom layers
pretrained weights
|
|
gptkbp:usedBy
|
gptkb:engineer
gptkb:researchers
data scientists
|
|
gptkbp:usedFor
|
gptkb:reinforcement_learning
computer vision
deep learning
natural language processing
|
|
gptkbp:bfsParent
|
gptkb:TorchServe
|
|
gptkbp:bfsLayer
|
7
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
PyTorch models
|