Normal distribution

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf Probability distribution
gptkbp:68-95-99.7Rule 68% within 1σ
95% within 2σ
99.7% within 3σ
gptkbp:alsoKnownAs gptkb:Gaussian_distribution
gptkbp:centralLimitTheoremApplies true
gptkbp:characteristic exp(iμt - 0.5σ^2t^2)
gptkbp:continuity true
gptkbp:definedIn real numbers
gptkbp:describedBy mean
standard deviation
variance
gptkbp:entropy 0.5*ln(2πeσ^2)
gptkbp:firstDescribed gptkb:Carl_Friedrich_Gauss
gptkb:Abraham_de_Moivre
gptkbp:has68-95-99.7Rule true
gptkbp:hasCumulativeDistributionFunction Φ(x) = 1/2 [1 + erf((x-μ)/(σ√2))]
gptkbp:hasFeature gptkb:Standard_normal_distribution
gptkbp:hasInflectionPoints μ ± σ
gptkbp:hasKurtosis 3
gptkbp:hasProbabilityDensityFunction f(x) = (1/(σ√(2π))) * exp(- (x-μ)^2 / (2σ^2))
gptkbp:hasSkewness 0
https://www.w3.org/2000/01/rdf-schema#label Normal distribution
gptkbp:isBellShaped true
gptkbp:isLimitOfBinomialDistribution true
gptkbp:isMaximumEntropyDistribution true
gptkbp:isStableDistribution true
gptkbp:isUnimodal true
gptkbp:meanEqualsMedianEqualsMode true
gptkbp:momentGeneratingFunction exp(μt + 0.5σ^2t^2)
gptkbp:parameter μ (mean)
σ (standard deviation)
σ^2 (variance)
gptkbp:standardFormMean 0
gptkbp:standardFormStandardDeviation 1
gptkbp:supports (-∞, ∞)
gptkbp:symmetry true
gptkbp:usedFor gptkb:signal_processing
statistical analysis
hypothesis testing
modeling measurement errors
statistical inference
quality control
probabilistic modeling
gptkbp:usedIn gptkb:machine_learning
gptkb:natural_sciences
finance
statistics
gptkbp:bfsParent gptkb:Pearson_distribution
gptkb:Student's_t-distribution
gptkbp:bfsLayer 5