gptkbp:instance_of
|
gptkb:Artificial_Intelligence
|
gptkbp:applies_to
|
gptkb:microprocessor
financial modeling
natural language processing
image classification
convex functions
|
gptkbp:based_on
|
momentum concept
|
gptkbp:benefits
|
overfitting reduction
|
gptkbp:can_be_used_with
|
adaptive learning rates
|
gptkbp:developed_by
|
gptkb:Yurii_Nesterov
|
https://www.w3.org/2000/01/rdf-schema#label
|
Nesterov Accelerated Gradient
|
gptkbp:improves
|
gradient descent
|
gptkbp:is_a
|
first-order optimization method
|
gptkbp:is_adopted_by
|
data scientists
machine learning practitioners
|
gptkbp:is_analyzed_in
|
research papers
|
gptkbp:is_characterized_by
|
adaptive step size
lookahead gradient
|
gptkbp:is_compared_to
|
gptkb:Adam_optimizer
gptkb:Nesterov's_method
RM Sprop
|
gptkbp:is_considered_as
|
a variant of momentum
|
gptkbp:is_described_as
|
theoretical analysis
|
gptkbp:is_effective_against
|
large-scale optimization
|
gptkbp:is_evaluated_by
|
benchmark tests
loss function
|
gptkbp:is_explored_in
|
academic literature
optimization research
|
gptkbp:is_implemented_in
|
gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:scikit-learn
gptkb:Py_Torch
|
gptkbp:is_influenced_by
|
classical mechanics
|
gptkbp:is_known_for
|
faster convergence
|
gptkbp:is_optimized_for
|
non-convex functions
|
gptkbp:is_part_of
|
optimization techniques
|
gptkbp:is_recognized_by
|
state-of-the-art method
|
gptkbp:is_related_to
|
stochastic gradient descent
|
gptkbp:is_studied_in
|
numerical optimization
|
gptkbp:is_supported_by
|
theoretical proofs
|
gptkbp:is_used_for
|
training models
|
gptkbp:is_used_in
|
deep learning
reinforcement learning
time series forecasting
|
gptkbp:is_utilized_in
|
computer vision
parameter tuning
|
gptkbp:provides
|
momentum
|
gptkbp:suitable_for
|
standard gradient descent
|
gptkbp:used_in
|
gptkb:software_framework
|
gptkbp:bfsParent
|
gptkb:CNTK
|
gptkbp:bfsLayer
|
4
|