Multi-task Learning for Computer Vision

GPTKB entity

Statements (46)
Predicate Object
gptkbp:instanceOf research
gptkbp:application pose estimation
image classification
object detection
semantic segmentation
depth estimation
gptkbp:approach multi-modal learning
cross-stitch networks
hard parameter sharing
soft parameter sharing
task-specific layers
gptkbp:challenge balancing losses
negative transfer
task interference
gptkbp:conference gptkb:CVPR
gptkb:ECCV
gptkb:ICCV
gptkb:NeurIPS
gptkbp:database gptkb:COCO
gptkb:Cityscapes
gptkb:PASCAL_VOC
NYU Depth V2
gptkbp:field computer vision
gptkbp:goal efficient learning
improve generalization
reduce overfitting
https://www.w3.org/2000/01/rdf-schema#label Multi-task Learning for Computer Vision
gptkbp:relatedTo gptkb:Mask_R-CNN
self-supervised learning
transfer learning
representation learning
multi-task learning
domain adaptation
meta-learning
Taskonomy
Cross-stitch Networks
MTAN
Sluice Networks
UberNet
gptkbp:surveyedBy Ruder 2017
Zamir et al. 2018
gptkbp:uses convolutional neural networks
deep learning
shared representations
gptkbp:bfsParent gptkb:Dr._Alex_Kendall
gptkbp:bfsLayer 8