Linear Regression Analysis

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:alternativeTo gptkb:Lasso_Regression
gptkb:Polynomial_Regression
gptkb:Ridge_Regression
Logistic Regression
Nonlinear Regression
gptkbp:appliesTo Time series analysis
Forecasting
Risk assessment
Experimental data
gptkbp:assesses gptkb:t-test
F-test
Adjusted R-squared
Residual plots
Durbin-Watson test
gptkbp:assumes Linearity
Homoscedasticity
Independence of errors
Normality of errors
gptkbp:canBe Multiple Linear Regression
Simple Linear Regression
gptkbp:developedBy gptkb:Francis_Galton
gptkb:Karl_Pearson
gptkbp:estimatedCost Regression coefficients
gptkbp:firstDescribed 19th century
https://www.w3.org/2000/01/rdf-schema#label Linear Regression Analysis
gptkbp:limitation Assumes linearity
Sensitive to outliers
Multicollinearity can affect results
gptkbp:output Confidence intervals
P-values
R-squared value
Regression equation
gptkbp:purpose Model relationship between dependent and independent variables
gptkbp:reduces Sum of squared residuals
gptkbp:relatedTo gptkb:Ordinary_Least_Squares
Prediction
ANOVA
Residuals
Correlation
gptkbp:software gptkb:Python
gptkb:SAS
gptkb:SPSS
gptkb:Stata
R
gptkbp:usedIn gptkb:Machine_Learning
gptkb:Data_Science
Statistics
Econometrics
gptkbp:bfsParent gptkb:G.A.F._Seber
gptkbp:bfsLayer 8