Ridge Regression

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instanceOf Machine Learning Algorithm
Regression Method
Statistical Technique
gptkbp:alsoKnownAs Tikhonov Regularization
gptkbp:appliesTo gptkb:Linear_Regression
gptkbp:category Supervised Learning
Linear Models
Regularization Methods
gptkbp:contrastsWith gptkb:Elastic_Net
gptkb:Ordinary_Least_Squares
gptkb:Lasso_Regression
gptkbp:feature Does Not Set Coefficients Exactly to Zero
Handles Many Predictors
Improves Prediction Accuracy
Sensitive to Scaling of Predictors
Shrinks Coefficient Estimates
gptkbp:form (X^T X + λI)^{-1} X^T y
https://www.w3.org/2000/01/rdf-schema#label Ridge Regression
gptkbp:implementedIn gptkb:SAS
gptkb:MATLAB
gptkb:Stata
gptkb:scikit-learn
R
gptkbp:improves Bias of Estimates
gptkbp:introduced gptkb:Andrey_Tikhonov
gptkbp:introducedIn 1943
gptkbp:parameterSelectionMethod Cross-Validation
gptkbp:penaltyTerm Lambda times Sum of Squared Coefficients
gptkbp:reduces Sum of Squared Residuals plus L2 Penalty
Variance of Estimates
gptkbp:regularizationType L2 Regularization
gptkbp:relatedTo gptkb:Elastic_Net
gptkb:Ordinary_Least_Squares
gptkb:Lasso_Regression
Principal Component Regression
gptkbp:requires Selection of Regularization Parameter
gptkbp:solvedBy Analytical Solution
Closed Form Solution
gptkbp:usedFor Regression Analysis
Overfitting Reduction
Multicollinearity Handling
gptkbp:usedIn gptkb:Machine_Learning
Finance
Statistics
Genomics
Econometrics
gptkbp:bfsParent gptkb:Linear_Model
gptkbp:bfsLayer 5