LASSO regression

GPTKB entity

Statements (33)
Predicate Object
gptkbp:instanceOf gptkb:model
statistical analysis
regression analysis method
gptkbp:advantage automatic variable selection
prevents overfitting
gptkbp:canSetCoefficientsToZero true
gptkbp:category supervised learning
sparse modeling
gptkbp:field gptkb:machine_learning
data science
statistics
gptkbp:form minimize (1/2n)||y - Xβ||^2_2 + λ||β||_1
gptkbp:fullName gptkb:Least_Absolute_Shrinkage_and_Selection_Operator
https://www.w3.org/2000/01/rdf-schema#label LASSO regression
gptkbp:hyperparameter lambda
gptkbp:implementedIn gptkb:MATLAB
gptkb:scikit-learn
R
gptkbp:introduced gptkb:Robert_Tibshirani
gptkbp:introducedIn 1996
gptkbp:limitation can select at most n variables if n < p
can be unstable with highly correlated variables
gptkbp:objective minimize sum of squared errors plus lambda times sum of absolute values of coefficients
gptkbp:penalty L1 norm
gptkbp:relatedTo gptkb:Elastic_Net
gptkb:Ridge_regression
gptkbp:shrinksCoefficients true
gptkbp:usedFor feature selection
linear regression
regularization
gptkbp:bfsParent gptkb:Ordinary_least_squares
gptkb:Ordinary_Least_Squares
gptkbp:bfsLayer 7