Kubeflow Serving

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Kubeflow_Pipelines
gptkbp:allows Model versioning
gptkbp:can_be_extended_by gptkb:theorem
gptkbp:constructed_in Kubernetes architecture
gptkbp:deployment Cloud platforms
On-premises infrastructure
gptkbp:developed_by gptkb:Job_Search_Engine
gptkb:Go_programming_language
gptkb:language
gptkbp:enables Canary deployments
A/ B testing
gptkbp:has gptkb:operating_system
gptkb:Community_support
API endpoints
https://www.w3.org/2000/01/rdf-schema#label Kubeflow Serving
gptkbp:integrates_with gptkb:fortification
CI/ CD pipelines
gptkbp:is_available_on gptkb:archive
gptkbp:is_compatible_with gptkb:lake
gptkb:Helm
gptkb:Kubeflow_Pipelines
gptkbp:is_designed_for Deploying machine learning models
gptkbp:is_documented_in Git Hub repositories
Kubeflow documentation
gptkbp:is_open_source gptkb:theorem
gptkbp:is_optimized_for High availability
Low latency
gptkbp:is_part_of Kubeflow ecosystem
Data pipeline management
ML Ops
AI/ ML workflows
gptkbp:is_scalable gptkb:theorem
gptkbp:is_supported_by Open source community
Cloud providers
gptkbp:is_tested_for Unit tests
Integration tests
gptkbp:is_used_by Data scientists
Machine learning engineers
gptkbp:is_used_for Real-time inference
Model deployment
Model serving orchestration
gptkbp:is_used_in Production environments
gptkbp:offers RESTAPI
gptkbp:provides Automatic scaling
Monitoring tools
Logging capabilities
Model serving capabilities
Custom model serving options
gptkbp:supports gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
Batch predictions
Model monitoring
Model artifacts
Multiple frameworks
Online predictions
gptkbp:uses g RPC for communication