Kubeflow Katib

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Kubeflow_Pipelines
gptkbp:allows Multi-objective optimization
gptkbp:can_be_extended_by Custom algorithms
gptkbp:community_support gptkb:battle
gptkbp:deployment Cloud platforms
On-premises environments
gptkbp:developed_by gptkb:Kubeflow_Community
gptkbp:has_documentation Official documentation
gptkbp:has_feature Visualization tools
Experiment tracking
Trial management
https://www.w3.org/2000/01/rdf-schema#label Kubeflow Katib
gptkbp:integrates_with gptkb:Prometheus
gptkb:opera
gptkb:Kubeflow_Pipelines
gptkbp:is_available_on gptkb:archive
gptkbp:is_compatible_with gptkb:Jupyter_notebooks
Kubernetes clusters
gptkbp:is_designed_for Automated machine learning
gptkbp:is_integrated_with CI/ CD pipelines
gptkbp:is_open_source gptkb:theorem
gptkbp:is_optimized_for Machine learning models
gptkbp:is_part_of Kubeflow ecosystem
ML Ops tools
ML workflow
gptkbp:is_scalable gptkb:battle
gptkbp:is_supported_by Cloud providers
gptkbp:is_used_by Data scientists
Machine learning engineers
gptkbp:is_used_for Model selection
Parameter tuning
gptkbp:is_used_in Research projects
Production environments
gptkbp:provides RESTAPI
CLI tools
Logging capabilities
Custom metrics support
Automated hyperparameter optimization
gptkbp:purpose Hyperparameter tuning
gptkbp:released Regular updates
gptkbp:suitable_for Large datasets
Distributed training
gptkbp:supports gptkb:fortification
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkb:Scikit-learn
XG Boost
Multi-node training
gptkbp:user_interface Web UI
gptkbp:uses Bayesian optimization
Grid search
Random search
gptkbp:written_in gptkb:Go