Kernel Principal Component Analysis
GPTKB entity
Statements (31)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Dimensionality reduction technique
|
gptkbp:abbreviation |
gptkb:Kernel_PCA
|
gptkbp:application |
Data visualization
Feature extraction Preprocessing for classification Preprocessing for clustering |
gptkbp:basedOn |
Principal Component Analysis
|
gptkbp:category |
Unsupervised learning
Nonlinear dimensionality reduction |
gptkbp:commonKernels |
Gaussian kernel
Polynomial kernel Sigmoid kernel |
gptkbp:field |
Statistics
Machine learning Pattern recognition |
gptkbp:handles |
Nonlinear data
|
https://www.w3.org/2000/01/rdf-schema#label |
Kernel Principal Component Analysis
|
gptkbp:implementedIn |
gptkb:scikit-learn
R (kernlab package) |
gptkbp:introduced |
gptkb:Bernhard_Schölkopf
|
gptkbp:introducedIn |
1997
|
gptkbp:limitation |
Choice of kernel affects results
Computationally intensive for large datasets |
gptkbp:output |
Principal components in feature space
|
gptkbp:relatedTo |
gptkb:Support_Vector_Machine
Manifold learning Linear PCA |
gptkbp:requires |
Kernel function
|
gptkbp:uses |
Kernel trick
|
gptkbp:bfsParent |
gptkb:Gaussian_Kernel
|
gptkbp:bfsLayer |
7
|