Inception-Res Net v2

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:based_on deep learning principles
gptkbp:can_be_used_with gptkb:Res_Net_architecture
Inception architecture
gptkbp:developed_by gptkb:Job_Search_Engine
gptkbp:has pre-trained models
multiple layers
gptkbp:has_achievements high accuracy on Image Net
https://www.w3.org/2000/01/rdf-schema#label Inception-Res Net v2
gptkbp:improves training speed
gptkbp:introduced gptkb:2016
gptkbp:is_compatible_with various datasets
gptkbp:is_designed_for high performance
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:CIFAR-100
cross-validation
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Res_Ne_Xt
gptkbp:is_known_for high precision
efficient computation
state-of-the-art performance
robustness to noise
reducing overfitting
gptkbp:is_optimized_for speed and accuracy
gptkbp:is_part_of AI research community
model zoo
Keras applications
gptkbp:is_popular_in gptkb:physicist
gptkb:academic_research
gptkbp:is_related_to gptkb:Dense_Net
gptkbp:is_scalable larger models
gptkbp:is_used_for image classification
gptkbp:is_used_in gptkb:engine
image recognition
object detection
video analysis
facial recognition
image generation
image retrieval
semantic segmentation
medical image analysis
style transfer
computer vision tasks
transfer learning tasks
gptkbp:performance other architectures
gptkbp:reduces model size
gptkbp:suitable_for large datasets
real-time applications
gptkbp:supports transfer learning
gptkbp:training stochastic gradient descent
GP Us
gptkbp:utilizes batch normalization
skip connections
gptkbp:variant gptkb:Res_Net
gptkb:Inception_v3
gptkbp:bfsParent gptkb:Inception_v4
gptkbp:bfsLayer 7