gptkbp:instance_of
|
gptkb:Artificial_Intelligence
|
gptkbp:bfsLayer
|
6
|
gptkbp:bfsParent
|
gptkb:Keras_Tuner
|
gptkbp:applies_to
|
gptkb:software_framework
deep learning models
|
gptkbp:based_on
|
bandit-based optimization
|
gptkbp:can_be_used_with
|
other optimization techniques
|
gptkbp:developed_by
|
Nicolas P. Joulin
|
https://www.w3.org/2000/01/rdf-schema#label
|
Hyperband
|
gptkbp:improves
|
random search
|
gptkbp:introduced
|
gptkb:2016
|
gptkbp:is_compared_to
|
Successive Halving
|
gptkbp:is_designed_for
|
efficient hyperparameter tuning
|
gptkbp:is_effective_against
|
resource allocation
|
gptkbp:is_evaluated_by
|
cross-validation
|
gptkbp:is_implemented_in
|
gptkb:Library
|
gptkbp:is_optimized_for
|
neural architecture search
|
gptkbp:is_part_of
|
gptkb:Auto_ML
|
gptkbp:is_popular_in
|
data science community
|
gptkbp:is_related_to
|
Bayesian optimization
|
gptkbp:is_used_for
|
hyperparameter optimization
|
gptkbp:is_used_in
|
automated machine learning frameworks
|
gptkbp:requires
|
computational resources
|
gptkbp:suitable_for
|
large search spaces
|
gptkbp:utilizes
|
early stopping
|