Hyperband

GPTKB entity

Statements (25)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:bfsLayer 6
gptkbp:bfsParent gptkb:Keras_Tuner
gptkbp:applies_to gptkb:software_framework
deep learning models
gptkbp:based_on bandit-based optimization
gptkbp:can_be_used_with other optimization techniques
gptkbp:developed_by Nicolas P. Joulin
https://www.w3.org/2000/01/rdf-schema#label Hyperband
gptkbp:improves random search
gptkbp:introduced gptkb:2016
gptkbp:is_compared_to Successive Halving
gptkbp:is_designed_for efficient hyperparameter tuning
gptkbp:is_effective_against resource allocation
gptkbp:is_evaluated_by cross-validation
gptkbp:is_implemented_in gptkb:Library
gptkbp:is_optimized_for neural architecture search
gptkbp:is_part_of gptkb:Auto_ML
gptkbp:is_popular_in data science community
gptkbp:is_related_to Bayesian optimization
gptkbp:is_used_for hyperparameter optimization
gptkbp:is_used_in automated machine learning frameworks
gptkbp:requires computational resources
gptkbp:suitable_for large search spaces
gptkbp:utilizes early stopping