Hierarchical Density-Based Spatial Clustering of Applications with Noise

GPTKB entity

Statements (26)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:abbreviation gptkb:HDBSCAN
gptkbp:application data analysis
pattern recognition
anomaly detection
gptkbp:basedOn gptkb:DBSCAN
gptkbp:citation Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Advances in Knowledge Discovery and Data Mining (pp. 160-172).
gptkbp:feature extracts flat clustering from hierarchy
finds clusters of varying densities
identifies noise points
produces a hierarchy of clusters
gptkbp:field gptkb:machine_learning
data mining
https://www.w3.org/2000/01/rdf-schema#label Hierarchical Density-Based Spatial Clustering of Applications with Noise
gptkbp:input gptkb:Metric
minimum cluster size
minimum samples
gptkbp:introduced Campello, Moulavi, Sander
gptkbp:introducedIn 2013
gptkbp:openSource Python hdbscan library
gptkbp:output cluster labels
noise labels
gptkbp:relatedTo gptkb:OPTICS
gptkb:DBSCAN
gptkbp:bfsParent gptkb:HDBSCAN
gptkbp:bfsLayer 7