GCN

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:applies_to graph-structured data
gptkbp:can_be_combined_with recurrent neural networks
attention mechanisms
gptkbp:can_handle large-scale graphs
gptkbp:developed_by gptkb:Thomas_Kipf
gptkbp:has_applications_in computer vision
natural language processing
gptkbp:has_expansion gptkb:neural_networks
gptkbp:has_limitations scalability issues
over-smoothing
https://www.w3.org/2000/01/rdf-schema#label GCN
gptkbp:improves node classification
gptkbp:is_adopted_by data scientists
AI researchers
machine learning engineers
gptkbp:is_applied_in recommendation systems
social network analysis
biological network analysis
gptkbp:is_based_on spectral graph theory
gptkbp:is_compared_to other graph neural networks
traditional machine learning methods
gptkbp:is_considered_as state-of-the-art method
gptkbp:is_evaluated_by Citeseer dataset
Cora dataset
Pubmed dataset
semi-supervised settings
supervised settings
unsupervised settings
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Cheb_Net
gptkb:Graph_SAGE
GAT
gptkbp:is_known_for efficiency
flexibility
scalability
gptkbp:is_part_of graph neural networks
gptkbp:is_popular_in gptkb:academic_research
industry applications
gptkbp:is_related_to gptkb:machine_learning
deep learning
gptkbp:is_supported_by research papers
tutorials
numerous libraries
gptkbp:is_used_in community detection
link prediction
graph classification
gptkbp:performance graph-based tasks
gptkbp:requires feature engineering
gptkbp:used_for semi-supervised learning
gptkbp:utilizes convolutional layers
gptkbp:year_created gptkb:2016
gptkbp:bfsParent gptkb:neural_networks
gptkbp:bfsLayer 4