Statements (64)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:algorithm
mathematical optimization search heuristic |
gptkbp:application |
gptkb:machine_learning
robotics optimization game playing scheduling engineering design |
gptkbp:category |
stochastic algorithm
metaheuristic global optimization method |
gptkbp:criteria |
elitism
rank selection roulette wheel selection tournament selection |
gptkbp:crossoverType |
single-point crossover
two-point crossover uniform crossover |
gptkbp:describedBy |
gptkb:Adaptation_in_Natural_and_Artificial_Systems
|
gptkbp:field |
gptkb:artificial_intelligence
gptkb:evolutionary_computation computer science operations research |
https://www.w3.org/2000/01/rdf-schema#label |
Genetic algorithm
|
gptkbp:inspiredBy |
gptkb:natural_selection
genetics |
gptkbp:introduced |
gptkb:John_Holland
|
gptkbp:introducedIn |
1975
|
gptkbp:limitation |
computational cost
parameter tuning premature convergence |
gptkbp:mutationAssociatedWith |
bit flip mutation
scramble mutation swap mutation |
gptkbp:openSource |
gptkb:DEAP
gptkb:GAUL gptkb:PyGAD gptkb:ECJ JGAP |
gptkbp:relatedTo |
gptkb:simulated_annealing
gptkb:particle_swarm_optimization genetic programming differential evolution evolutionary algorithm |
gptkbp:represents |
gptkb:gene
chromosomal band bit string real-valued vector |
gptkbp:step |
examination
mutant crossover selection replacement initialization termination |
gptkbp:uses |
mutant
crossover selection fitness function population of candidate solutions |
gptkbp:bfsParent |
gptkb:Simulated_annealing
gptkb:Metaheuristics |
gptkbp:bfsLayer |
7
|