Gaussian Processes for Machine Learning

GPTKB entity

Properties (52)
Predicate Object
gptkbp:instanceOf software
gptkbp:developedBy Carl Edward Rasmussen
Christopher_K._I._Williams
https://www.w3.org/2000/01/rdf-schema#label Gaussian Processes for Machine Learning
gptkbp:isAvenueFor Optimization
Spatial Statistics
Time_Series_Analysis
gptkbp:isBasedOn Bayesian Inference
gptkbp:isChallengedBy Scalability Issues
Computational Complexity
Choice of Kernel
gptkbp:isCharacterizedBy Kernel Functions
Covariance Functions
Mean Functions
gptkbp:isDocumentedIn Research Papers
Textbooks
Documentation
Online Tutorials
gptkbp:isEvaluatedBy Cross-Validation
Posterior Predictive Checks
Log Marginal Likelihood
gptkbp:isInfluencedBy Bayesian Statistics
Statistical Learning Theory
Non-parametric Statistics
gptkbp:isKnownFor Flexibility
Ability_to_Model_Complex_Functions
Non-parametric_Nature
gptkbp:isLocatedIn MATLAB
Python
R
gptkbp:isPopularIn Artificial Intelligence
Statistics
Data_Science
gptkbp:isRelatedTo gptkb:Support_Vector_Machines
Markov Chain Monte Carlo
Neural Networks
gptkbp:isSupportedBy Gaussian Process Regression
Gaussian_Process_Classification
Gaussian_Process_Latent_Variable_Models
gptkbp:isTaughtIn Statistics Courses
Machine Learning Courses
Data_Science_Programs
gptkbp:isUsedFor Anomaly Detection
Active Learning
Bayesian Optimization
Surrogate Modeling
gptkbp:isUsedIn Classification
Regression
gptkbp:provides Uncertainty Quantification
gptkbp:publishedIn 2006
gptkbp:requires Computational_Resources
Hyperparameter_Tuning