Gaussian Process

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:stochastic_process
gptkbp:application Time series analysis
Geostatistics
Spatial statistics
Active learning
Surrogate modeling
gptkbp:approximationMethod Inducing points
Sparse Gaussian Process
gptkbp:component Kernel function
Covariance function
Mean function
gptkbp:defines A collection of random variables, any finite number of which have a joint Gaussian distribution
gptkbp:field gptkb:Probability_theory
Statistics
Machine learning
gptkbp:form f(x) ~ GP(m(x), k(x, x'))
https://www.w3.org/2000/01/rdf-schema#label Gaussian Process
gptkbp:inferenceMethod Bayesian inference
gptkbp:introducedIn 20th century
gptkbp:limitation Computationally expensive for large datasets
gptkbp:namedAfter gptkb:Carl_Friedrich_Gauss
gptkbp:property Defined by mean function and covariance function
Non-parametric
gptkbp:relatedTo gptkb:Gaussian_distribution
gptkb:Kernel_methods
Bayesian statistics
Brownian motion
Gaussian noise
Kriging
Uncertainty quantification
Covariance matrix
Random process
Hyperparameters
Function space view
Marginal likelihood
Multivariate normal distribution
Posterior distribution
Prediction interval
Prior distribution
Reproducing kernel Hilbert space
gptkbp:software gptkb:GPflow
gptkb:GPy
gptkb:Stan
gptkb:scikit-learn
gptkbp:usedFor Bayesian optimization
Regression
Classification
Function approximation
gptkbp:bfsParent gptkb:Bayesian_Nonparametrics
gptkbp:bfsLayer 7