Exponential family distributions

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf Statistical distribution family
gptkbp:characterizedBy Log-partition function
Natural parameter
Sufficient statistic
gptkbp:definedIn Probability density function of the form f(x|θ) = h(x) exp(η(θ)·T(x) - A(θ))
gptkbp:hasProperty Exponential family form is preserved under conditioning
Exponential family form is preserved under product of distributions
Closure under conditioning
Closure under marginalization
Closure under sampling
Conjugate prior exists
Convexity of log-partition function
Cumulant generating function exists
Dual parameterization
Duality between natural and mean parameters
Exponential tilting
Factorization theorem applies
Fisher information matrix is well-defined
Identifiability
Maximum entropy property
Minimality
Moment generating function exists
Regularity
Steepness
Sufficient statistics are complete
Exponential family form is preserved under marginalization
https://www.w3.org/2000/01/rdf-schema#label Exponential family distributions
gptkbp:includes gptkb:Dirichlet_distribution
gptkb:Bernoulli_distribution
gptkb:Poisson_distribution
gptkb:Binomial_distribution
gptkb:Exponential_distribution
gptkb:Multinomial_distribution
gptkb:Beta_distribution
gptkb:Gamma_distribution
gptkb:Normal_distribution
gptkbp:parameter Natural parameter
Mean parameter
gptkbp:relatedTo gptkb:Kullback-Leibler_divergence
Entropy
Information geometry
Maximum likelihood estimation
Sufficient statistics
gptkbp:studiedBy Statistics
Machine learning
gptkbp:usedIn gptkb:Generalized_linear_models
gptkb:Variational_inference
Bayesian statistics
gptkbp:bfsParent gptkb:Beta_distribution
gptkbp:bfsLayer 6