gptkbp:instance_of
|
gptkb:neural_networks
|
gptkbp:architecture
|
Image Classification
|
gptkbp:base_model
|
gptkb:Efficient_Net
|
gptkbp:designed_for
|
Mobile and Edge Devices
|
gptkbp:developed_by
|
gptkb:Google_AI
|
gptkbp:has_achieved
|
State-of-the-art performance
Higher accuracy with fewer parameters
|
https://www.w3.org/2000/01/rdf-schema#label
|
Efficient Net B2
|
gptkbp:improves
|
gptkb:Efficient_Net_B1
|
gptkbp:input_output
|
260x260
|
gptkbp:is_evaluated_by
|
gptkb:Cityscapes_Dataset
gptkb:Open_Images_Dataset
gptkb:ADE20_K_Dataset
gptkb:PASCAL_VOC_Dataset
gptkb:CIFAR-10
gptkb:Celeb_A_Dataset
gptkb:CIFAR-100
Kaggle Datasets
LFW Dataset
MS COCO Dataset
CUB-200-2011 Dataset
Caltech-256 Dataset
Food-101 Dataset
Image Net V2 Dataset
Image Net-10 Dataset
Image Net-100 Dataset
Image Net-1000 Dataset
Image Net-21 K Dataset
Image Net-5 Dataset
Image Net-50 Dataset
Image Net-500 Dataset
Image Net-A Dataset
Image Net-R Dataset
Image Net-S Dataset
Image Net-Vid Dataset
MIT Indoor Scenes Dataset
Open ML Datasets
Oxford Flowers Dataset
Oxford Pets Dataset
Places365 Dataset
Stanford Dogs Dataset
Tiny Image Net Dataset
VGGFace2 Dataset
WIDER FACE Dataset
|
gptkbp:is_implemented_in
|
gptkb:Tensor_Flow
gptkb:Py_Torch
|
gptkbp:is_optimized_for
|
Image Recognition Tasks
|
gptkbp:is_part_of
|
Efficient Net family
|
gptkbp:is_trained_in
|
gptkb:Image_Net
|
gptkbp:is_used_in
|
Computer Vision Applications
|
gptkbp:model
|
gptkb:Efficient_Net
|
gptkbp:orbital_period
|
7.7 million
|
gptkbp:performance
|
gptkb:Image_Net_Challenge
FLOPs
|
gptkbp:related_to
|
gptkb:Neural_Architecture_Search
|
gptkbp:release_year
|
gptkb:2019
|
gptkbp:successor
|
gptkb:Efficient_Net_B3
|
gptkbp:supports
|
gptkb:stage_adaptation
|
gptkbp:top1_accuracy
|
82.7%
|
gptkbp:top5_accuracy
|
96.5%
|
gptkbp:uses
|
gptkb:Batch_Normalization
Compound Scaling
Depthwise Separable Convolutions
Swish Activation Function
|
gptkbp:bfsParent
|
gptkb:Efficient_Net
|
gptkbp:bfsLayer
|
5
|