Statements (53)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:Cloud_Computing_Service
|
gptkbp:application |
Image_Super-Resolution
|
gptkbp:architecturalStyle |
gptkb:Convolutional_Neural_Network
|
gptkbp:developedBy |
K._Lim
|
gptkbp:enhances |
Residual Learning
|
gptkbp:features |
Skip Connections
Bottleneck Structure |
https://www.w3.org/2000/01/rdf-schema#label |
EDSR
|
gptkbp:inputOutput |
Low-Resolution Images
Multiple Resolutions |
gptkbp:is_a_platform_for |
gptkb:PyTorch
TensorFlow |
gptkbp:keyIssues |
43 million
|
gptkbp:losses |
L1 Loss
L2 Loss |
gptkbp:maximumDepth |
gptkb:Adam
SGD |
gptkbp:notableFeature |
State-of-the-art performance
Real-time processing capability |
gptkbp:numberOfStudents |
32
|
gptkbp:operates |
Open Source
Available on GitHub |
gptkbp:performance |
PSNR
SSIM |
gptkbp:powerOutput |
High-Resolution Images
|
gptkbp:relatedModel |
gptkb:SRCNN
gptkb:VDSR SRGAN |
gptkbp:relatedPatent |
Artificial Intelligence
Deep Learning Neural Networks Convolutional Layers Data Augmentation Transfer Learning Feature Extraction Video Processing Real-time Applications Generative Models Image Quality Assessment Image Upscaling Computer_Graphics Model_Compression |
gptkbp:researchField |
Image Processing
Computer_Vision |
gptkbp:researchInterest |
Influenced subsequent models
Widely cited in literature |
gptkbp:resolution |
Up to 4x
|
gptkbp:training |
End-to-End Training
|
gptkbp:trainingPrograms |
DIV2K
|
gptkbp:userBase |
Developers
Researchers Industry Practitioners |
gptkbp:yearEstablished |
2017
|